

BERMUTU

Better Education Through Reformed Management and Universal Teacher Upgrading

DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN MUTU PENDIDIK DAN TENAGA KEPENDIDIKAN

Modul Matematika SMP Program BERMUTU

KAPITA SELEKTA PEMBELAJARAN GEOMETRI RUANG DI SMP

Penulis:

Untung Trisna Suwaji Sapon Suryopurnomo

Penilai:

Muhammad Danuri Budi Sudiarso

Editor:

Hanan Windro Sasongko

Lay out:

Indarti

Departemen Pendidikan Nasional
Direktorat Jenderal Peningkatan Mutu Pendidik dan
Tenaga Kependidikan
Pusat Pengembangan dan Pemberdayaan Pendidik dan
Tenaga Kependidikan (PPPTK) Matematika
2009

KATA PENGANTAR

Puji syukur kita panjatkan ke hadirat Tuhan Yang Maha Esa karena atas bimbingan-Nya akhirnya PPPPTK Matematika dapat mewujudkan modul program BERMUTU untuk mata pelajaran matematika SD sebanyak sembilan judul dan SMP sebanyak sebelas judul. Modul ini akan dimanfaatkan oleh para guru dalam kegiatan di KKG dan MGMP. Kami mengucapkan terima kasih yang tak terhingga kepada semua pihak yang telah membantu terwujudnya modul-modul tersebut.

Penyusunan modul melibatkan beberapa unsur yaitu PPPTK Matematika, LPMP, LPTK, Guru SD dan Guru Matematika SMP. Proses penyusunan modul diawali dengan *workshop* yang menghasilkan kesepakatan tentang judul, penulis, penekanan isi (tema) modul, sistematika penulisan, garis besar isi atau muatan tiap bab, dan garis besar isi saran cara pemanfaatan tiap judul modul di KKG dan MGMP. *Workshop* dilanjutkan dengan rapat kerja teknis penulisan dan penilaian *draft* modul yang kemudian diakhiri rapat kerja teknis finalisasi modul dengan fokus *editing* dan *layouting* modul.

Semoga duapuluh judul modul tersebut dapat bermanfaat optimal dalam memfasilitasi kegiatan para guru SD dan SMP di KKG dan MGMP, khususnya KKG dan MGMP yang mengikuti program BERMUTU sehingga dapat meningkatkan kinerja para guru dan kualitas pengelolaan pembelajaran matematika di SD dan SMP.

Tidak ada gading yang tak retak. Saran dan kritik yang membangun terkait modul dapat disampaikan ke PPPTK Matematika dengan alamat email p4tkmatematika@yahoo.com atau alamat surat: PPPTK Matematika,

Jalan Kaliurang Km 6 Condongcatur, Depok, Sleman, D.I. Yogyakarta atau Kotak Pos 31 Yk-Bs 55281 atau telepon (0274) 881717, 885725 atau nomor faksimili: (0274) 885752.

Sleman, Oktober 2009 a.n. Kepala PPPPTK Matematika Kepala Bidang Program dan Informasi

Winarno, M.Sc.

NIP 195404081978101001

DAFTAR ISI

KATA PENGANTAR			ii
DAFTAR ISI			iv
BAB I	PE	NDAHULUAN	1
	A.	Latar Belakang	1
	B.	Tujuan Penulisan	2
	C.	Ruang Lingkup Penulisan	2
	D.	Cara Pemanfaatan modul	2
BAB II	BANGUN RUANG DENGAN SISI DATAR		4
	A.	Pengantar	4
	B.	Tujuan Pembelajaran	4
	C.	Kegiatan Belajar	4
	D.	Latihan 1	27
	E.	Refleksi	30
BAB III	BA	NGUN RUANG DENGAN SISI LENGKUNG	31
	A.	Pengantar	31
	B.	Tujuan Pembelajaran	31
	C.	Kegiatan Belajar	32
	D.	Latihan 2	45
	E.	Refleksi	46
BAB IV	PEN	NUTUP	48
	A.	Kesimpulan	48
	B.	Tes	51
DAFTAR PUSTAKA			53
LAMPIRAN			54

BAB I PENDAHULUAN

A. Latar Belakang

Geometri ruang telah diajarkan sejak SD, namun ternyata kemampuan siswa dalam menyelesaikan soal-soal dimensi tiga masih rendah. Sebagai contoh, kadang-kadang siswa tidak dapat mengidentifikasi gambar limas persegi hanya karena penyajian dalam gambar mengharuskan bentuk persegi menjadi bentuk jajargenjang. Hasil survey *Programme for International Student Assessment* (PISA) 2000/2001 menunjukkan bahwa siswa lemah dalam geometri, khususnya dalam pemahaman ruang dan bentuk. Sebagai ilustrasi, siswa menghadapi kesukaran dalam membayangkan suatu balok yang berongga di dalamnya.

Bila dikaitkan dengan kurikulum yang berlaku, porsi geometri memang tidak banyak dan biasanya hanya diajarkan sebagai hafalan dan perhitungan semata (Hendra Gunawan, 2006: 14). Lebih lanjut, dalam hasil *Training Needs Assessment* (TNA) Calon Peserta Diklat Guru Matematika SMP yang dilaksanakan PPPPTK Matematika tahun 2007 dengan sampel sebanyak 268 guru SMP dari 15 propinsi menunjukkan bahwa untuk materi luas selimut, volum tabung, kerucut, dan bola sangat diperlukan oleh guru, di mana 48,1% guru responden menyatakan sangat memerlukan. Sementara itu, untuk materi luas permukaan dan volum balok, kubus, prisma, serta limas, 43,7% guru menyatakan sangat memerlukan. Sedangkan untuk materi:

- 1. sifat-sifat kubus, balok, prisma dan limas serta bagian-bagiannya,
- 2. pembuatan jaring-jaring kubus, balok, prisma dan limas,
- 3. unsur-unsur tabung, kerucut, dan bola, guru menyatakan memerlukan, dengan prosentase berturut-turut 48,1%, 48,1%, dan 45,9%. (Markaban, dkk., 2007: 15).

Sehubungan dengan hal di atas, penulis berusaha menguraikan secara lebih jelas dasar-dasar dimensi tiga terutama yang berkaitan dengan Standar Isi matematika SMP. Modul ini merupakan adaptasi dari paket Fasilitasi Pemberdayaan KKG/MGMP Matematika yang disusun oleh PPPPTK matematika tahun 2008.

B. Tujuan Penulisan

Modul ini disusun dengan harapan dapat memberikan tambahan dan pendalaman materi geometri ruang yang dibutuhkan bagi guru matematika SMP. Selain dapat dilakukan secara induktif, penurunan rumus-rumus bangun ruang dapat pula dilakukan secara deduktif terutama dalam hal penurunan rumus-rumus bangun ruang. Dalam pelaksanaan pembelajaran di kelas, hendaknya guru dapat menerapkan secara proporsional sesuai dengan kondisi dan standar kompetensi yang akan dicapai siswa. Siswa hendaknya juga memahami proses penurunan rumus agar mereka tidak sekedar hafal rumus.

C. Ruang Lingkup Penulisan

Materi dalam modul ini meliputi materi yang terdapat dalam standar isi ditambah dengan beberapa materi pengayaan. Materi-materi tersebut meliputi bangunbangun ruang dengan sisi datar seperti kubus, balok, prisma, dan limas, serta bangun-bangun ruang dengan sisi lengkung seperti kerucut, tabung, dan bola. Pada kedua jenis bangun ruang tersebut dibahas tentang konsep, istilah-istilah, luas permukaan, dan volum. Sedangkan materi pengayaan meliputi luas permukaan dan volum bangun ruang terpancung.

D. Cara Pemanfaatan Modul

Modul ini dimulai dengan pembahasan tentang bangun ruang. Pembaca diharapkan mempelajari dengan seksama dan mengkritisi materi yang diberikan. Untuk membantu memudahkan pemahaman, dapat digunakan media alat peraga matematika khususnya yang terkait dengan bangun ruang balok, prisma, limas, tabung, kerucut, dan bola. Untuk setiap bab, setelah kegiatan belajar, diberikan beberapa soal latihan untuk penguatan. Kerjakanlah semua soal dan gunakan

sketsa gambar sebaik-baiknya agar mempermudah pengerjaannya! Pada bagian akhir bab II dan bab III, pembaca diharapkan melakukan refleksi untuk mengukur sejauh mana materi dapat diserap. Pada bagian akhir modul juga diberikan beberapa soal tes. Anda dianggap berhasil dalam mempelajari modul ini jika memperoleh skor minimal 75% dari semua soal yang diberikan.

Pelajarilah modul ini secara berurut dan selesaikanlah soal-soal yang diberikan! Semoga memperoleh pemahaman yang optimal. Apabila pembaca menemukan kekurangan, mendapatkan kesulitan, atau ingin memberikan kritik, pembaca dapat menghubungi penulis melalui PPPTK Matematika dengan alamat Jl. Kaliurang KM 6, Sambisari, Condongcatur, Depok, Sleman, D.I. Yogyakarta, dengan *e-mail* p4tkmatematika@yahoo.com, atau melalui *e-mail* penulis ontongts@yahoo.com.

BAB II BANGUN RUANG DENGAN SISI DATAR

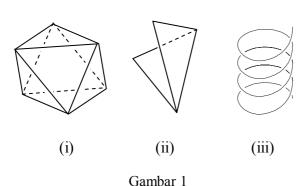
A. Pengantar

Setiap saat kita melihat berbagai bentuk bangun ruang di sekitar kita. Beberapa bangun ruang mungkin sulit didefinisikan secara tepat, namun bangun ruang tersebut dapat diidentifikasi melalui sifat-sifat atau proses terbentuknya. Sebagian dari bangun-bangun ruang tersebut ada yang terkategori bangun ruang dengan sisi datar seperti bangun ruang beraturan (*platonic solid*), bangun ruang semi beraturan (*archimedian solid*), prismoid, dan sebagainya. Namun dalam bagian ini hanya akan dibahas materi bangun ruang yang terkait dengan geometri ruang di SMP dengan tambahan materi pengayaan di beberapa bagian.

B. Tujuan Pembelajaran

Setelah mempelajari bagian ini, diharapkan pengguna modul lebih menguasai konsep-konsep bangun ruang dengan sisi datar, yang tercakup di dalamnya pengertian bangun kubus, balok, prisma, dan limas dengan perhitungan-perhitungan luas dan volumnya.

C. Kegiatan Belajar



Apakah yang dimaksud bangun ruang dalam konteks geometri dimensi tiga (geometri ruang)? Manakah di antara gambargambar di samping ini yang merupakan bangun ruang?

Sebuah bangun ruang, dalam konteks geometri ruang, adalah himpunan semua titik, garis, dan bidang dalam ruang berdimensi tiga yang terletak dalam bagian tertutup beserta seluruh permukaan yang membatasinya.

Sesuai dengan ketentuan di atas, maka yang termasuk dalam bangun ruang pada gambar di atas adalah gambar 1.(i). Lebih jauh, yang dimaksud dengan bangun ruang dengan sisi datar adalah bangun ruang yang dibatasi oleh bidang datar. Bangun ruang dengan sisi datar disebut juga sebagai bidang banyak atau polihedron yang berasal dari bahasa Yunani *polys* yang berarti banyak dan *hedron* yang berarti permukaan. Bidang-bidang datar pembatas bangun ruang dinamakan sebagai **bidang sisi**. Ruas garis yang terbentuk oleh perpotongan antara dua bidang sisi bangun ruang disebut **rusuk**. Titik potong dari rusuk-rusuk ini dinamakan sebagai **titik sudut**.

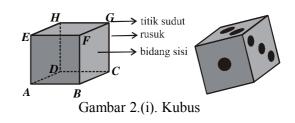
Kembali ke gambar 1, dalam konteks geometri ruang, benda seperti pada gambar 1.(ii) disebut sebagai **permukaan** dalam ruang berdimensi tiga, dan gambar 1.(iii) disebut sebagai **kurva** dalam ruang berdimensi tiga.

Selanjutnya, kegiatan belajar bangun ruang dengan sisi datar diuraikan ke dalam 3 kegiatan belajar, yaitu:

1. Kegiatan Belajar 1: Kubus dan Balok

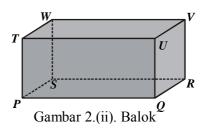
Apakah yang dimaksud dengan kubus? Bagaimana menentukan volum dan luas permukaannya? Pada bagian ini akan dibahas lebih jauh mengenai kubus.

Kubus merupakan bangun ruang yang dibatasi oleh enam buah persegi yang kongruen. Gambar 2.(i) memperlihatkan bahwa kubus memiliki 8 titiksudut dan 12 rusuk dengan panjang yang sama.



Contoh yang paling sederhana dari kubus adalah dadu.

Perhatikan gambar 2.(ii)! Balok mirip dengan kubus, yaitu memiliki 8 titiksudut dan 12 rusuk. Balok dibatasi oleh tiga pasang persegipanjang yang kongruen dan masingmasing pasangan yang kongruen ini terletak sejajar. Kubus merupakan kasus khusus dari

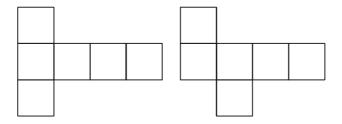


balok. Dengan kata lain, kubus dapat dikatakan sebagai balok yang semua sisinya berupa persegi. Contoh balok dalam kehidupan sehari-hari diantaranya adalah ruang kelas, kotak kemasan karton, dan balok kayu.

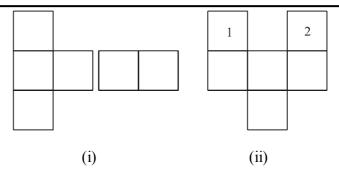
Penamaan kubus dan balok dibuat berdasarkan titik-titik sudutnya. Sebagai contoh, kubus pada gambar 2.(i) dapat dituliskan sebagai kubus *ABCD.EFGH*. Balok pada gambar 2.(ii) dapat dinamakan sebagai balok *PQRS.TUVW*.

Jaring-jaring Kubus dan Balok

Jika sebuah polihedron dipotong pada beberapa rusuknya dan dapat dibuka untuk diletakkan pada suatu bidang datar sehingga membentuk susunan yang saling terhubung, maka susunan yang terbentuk disebut sebagai **jaring-jaring**. Sebaliknya, suatu jaring-jaring polihedron dapat dilipat dan disambung untuk membentuk suatu polihedron. Aktivitas untuk menyelidiki jaring-jaring balok dan kubus dapat dilakukan siswa dengan memanfaatkan kotak karton bekas.

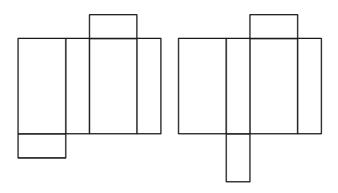


Gambar 3. Contoh Jaring-jaring Kubus



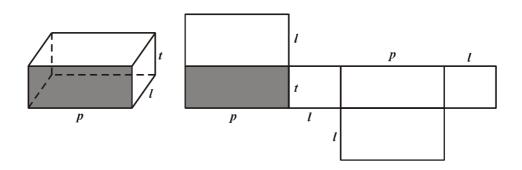
Gambar 4. Contoh Bukan Jaring-jaring Kubus

Gambar 4 bukan merupakan jaring-jaring kubus. Pada gambar 4.(i), terdapat bagian yang terpisah, sedangkan pada gambar 4.(ii) jika jaring-jaring ini dilipat, maka akan terdapat bagian yang saling menumpuk, yaitu persegi 1 dan persegi 2.



Gambar 5. Contoh Jaring-jaring Balok

b. Luas Permukaan Kubus dan Balok



Gambar 6. Balok Dengan Ukuran $p \times l \times t$ dan Salah Satu Jaring-jaringnya

Perhatikan gambar 6! Jika panjang rusuk balok adalah p, lebar l, dan tinggi t, maka

luas permukaan balok = 2pl + 2pt + 2lt = 2(pl + pt + lt)

Untuk kubus, dimana semua panjang rusuknya sama (p = l = t = a), diperoleh

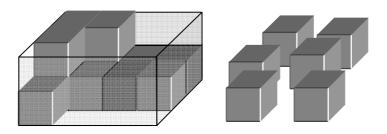
luas permukaan kubus = $6a^2$.

Volum Kubus dan Balok

Jika pada geometri datar luas suatu bangun dinyatakan sebagai banyaknya satuan luas yang dapat menutup bangun datar, maka dalam geometri ruang volum atau isi bangun ruang dinyatakan sebagai banyaknya satuan isi yang dapat mengisi bangun ruang tersebut. Volum diukur dalam satuan kubik, seperti centimeter kubik (cm³), inchi kubik (in³), atau meter kubik (m³). Satu cm³ menyatakan volum kubus dengan panjang rusuk 1 cm. Satuan lain untuk volum diantaranya adalah liter (1000 cc), gallon, barel, dan sebagainya. Selain ukuran baku untuk menyatakan volum, dalam kehidupan sehari-hari sering dijumpai juga ukuran-ukuran tidak baku seperti:

- sendok makan (takaran dosis obat)
- tetes (takaran untuk percobaan kimia)
- gelas (dalam masak-memasak)

Pada sebuah balok, percobaan paling mudah untuk menentukan volum adalah dengan menggunakan kubus satuan. Sebagai contoh, balok dengan ukuran panjang 3 satuan, lebar 2 satuan, dan tinggi 4 satuan dapat diisi dengan menggunakan kubus satuan sebanyak $3 \times 2 \times 4$ buah, sehingga dikatakan balok tersebut mempunyai volum 24 satuan volum.



Gambar 7. Percobaan Menentukan Volum Balok 3 \times 2 \times 4 dengan Kubus Satuan

Melalui proses percobaan dengan mengisi kubus satuan ke balok dalam berbagai ukuran, secara umum volum balok dengan panjang p, lebar l, dan tinggi t dapat dinyatakan sebagai

volum balok =
$$p \times l \times t$$

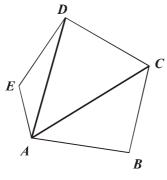
Mengingat bahwa alas balok (A) berbentuk persegipanjang dengan luas $A = p \times l$, maka volum balok dapat juga dinyatakan sebagai hasil kali luas alas dengan tinggi balok.

volum balok =
$$A \times t$$

Oleh karena pada kubus dengan panjang rusuk a berlaku p = l = t = a, maka volum kubus dapat dinyatakan sebagai

volum kubus =
$$a^3$$

d. Diagonal Sisi, Diagonal Ruang, dan Bidang Diagonal

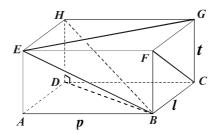


Gambar 8. Diagonal Segilima

Dalam geometri datar, diagonal pada sebuah segibanyak merupakan garis yang menghubungkan dua titiksudut yang tidak berdekatan. Sebagai contoh, pada segilima *ABCDE* (gambar 8), garis *AD* merupakan diagonal. Demikian juga dengan *AC*. Sementara itu, *AE* bukan diagonal dari segilima, karena titik *A* dan

E terletak berdekatan (terletak pada ruas garis yang sama).

Diagonal ruang suatu bangun ruang merupakan garis yang menghubungkan dua titiksudut yang tidak berdekatan (tidak terletak pada satu bidang sisi). Sebagai contoh perhatikan gambar 9! *HB* merupakan diagonal ruang dari balok *ABCD.EFGH*.



Gambar 9. Diagonal Sisi dan Diagonal Ruang Balok

Sedangkan bidang datar yang melewati titik-titik sudut pada bangun ruang dan memotong bangun ruang tersebut menjadi dua bagian disebut **bidang** diagonal.

Oleh karena itu dalam kubus dan balok terdapat tiga istilah diagonal, yaitu diagonal sisi, diagonal ruang, dan bidang diagonal. Terdapat 12 diagonal sisi dan 6 diagonal ruang pada balok dan kubus. Keduabelas diagonal sisi pada balok dan kubus membentuk enam buah bidang diagonal.

Perhatikan balok dengan ukuran $p \times l \times t$ pada gambar 9 di atas! Ruas garis EB, EG, dan FC merupakan tiga dari duabelas diagonal sisi pada balok ABCD.EFGH. Dengan menggunakan teorema Pythagoras, dapat ditentukan:

panjang
$$EB = \sqrt{p^2 + t^2}$$

panjang $EG = \sqrt{p^2 + l^2}$
panjang $FC = \sqrt{l^2 + t^2}$

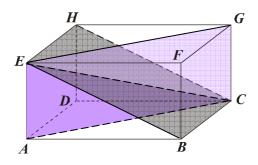
Pada gambar 9, *HB* merupakan satu di antara empat buah diagonal ruang balok *ABCD.EFGH*. Perhatikan bahwa segitiga *HDB*, siku-siku di *D*. Akibatnya, panjang diagonal ruang suatu balok dapat ditentukan dengan menggunakan teorema Pythagoras.

$$HB = \sqrt{DB^2 + DH^2} = \sqrt{(AB^2 + AD^2) + DH^2} = \sqrt{p^2 + l^2 + t^2}$$

Bidang diagonal suatu balok berbentuk persegipanjang. Pada gambar 10 diberikan dua dari tiga pasang bidang diagonal balok *ABCD.EFGH*. Perhatikan bahwa setiap pasang bidang diagonal tersebut kongruen! Akibatnya:

luas
$$BCHE = luas ADGF = BC \times EB = l \times \sqrt{p^2 + t^2}$$

luas $ACGE = luas DBFH = GC \times AC = t \times \sqrt{p^2 + l^2}$
luas $ABGH = luas CDEF = AB \times BG = p \times \sqrt{l^2 + t^2}$

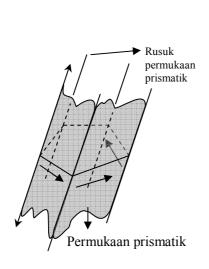


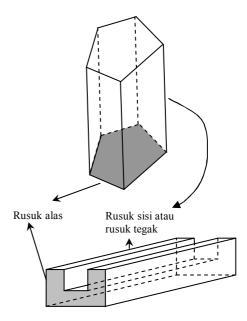
Gambar 10. Bidang Diagonal ACGE dan BCHE

2. Kegiatan Belajar 2: Prisma

Apakah yang dimaksud dengan prisma? Bagaimanakah cara menentukan volum dan luas permukaannya? Pada bagian ini akan dibahas lebih jauh mengenai prisma.

Perhatikan gambar 11! Jika sebuah garis lurus bergerak dalam ruang tanpa perubahan arah garis dan mengikuti keliling suatu segi-*n*, maka jejak yang terbentuk dinamakan **permukaan prismatik** (*prismatic surface*). Ketika garis yang bergerak ini tepat melalui titiksudut segi-*n*, maka garis ini merupakan **rusuk permukaan prismatik.**





Gambar 11. Permukaan Prismatik

Gambar 12. Prisma dan Bagian-Bagiannya

Jika sebuah bidang datar memotong permukaan prismatik beserta seluruh rusukrusuknya, maka akan terbentuk sebuah segi-*n*. Jika terdapat sebuah bidang lain
yang sejajar bidang pertama memotong permukaan prismatik, maka perpotongan
yang terbentuk akan kongruen dengan segi-*n* yang pertama. Dua segi-*n* yang
kongruen dari hasil perpotongan di atas, bagian permukaan prismatik yang berada
di antara keduanya beserta seluruh ruang tertutup yang dibatasinya membentuk
prisma segi-*n* (gambar 12). Dengan kata lain, **prisma** adalah bangun ruang yang
dibatasi oleh dua bidang segi-*n* yang sejajar dan kongruen, serta bidang-bidang
tegak yang menghubungkan bidang segi-*n* tersebut.

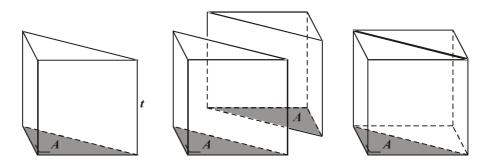
Dua segi-*n* ini disebut **alas** dan **tutup**, sedangkan permukaan prismatik di antara keduanya disebut **sisi prisma**. Tinggi prisma dinyatakan sebagai jarak antara bidang alas dan bidang tutup. Rusuk-rusuk yang terletak pada sisi prisma dinamakan **rusuk sisi** dan rusuk yang terletak bagian alas dinamakan sebagai **rusuk alas**. Jarak antara bidang alas dan tutup merupakan **tinggi prisma**. Apabila rusuk-rusuk sisi prisma tegak lurus terhadap alas, maka dinamakan sebagai **prisma tegak**, dan selain yang demikian, dinamakan sebagai **prisma miring**.

Jika tanpa penjelasan, yang dimaksud dengan prisma dalam modul ini adalah prisma tegak, yaitu prisma dengan rusuk sisi tegak lurus bidang alas.

Perhatikan bahwa balok juga termasuk prisma, yaitu prisma yang alasnya berbentuk persegipanjang! Demikian juga dengan kubus. Prisma diberi nama menurut bentuk alasnya. Contoh: prisma segitiga samasisi, prisma segienam beraturan, dan prisma segilima beraturan.

a. Volum Prisma Segitiga Siku-siku

Volum prisma segitiga siku-siku dapat dicari dengan membuat dua buah prisma segitiga siku-siku yang kongruen sehingga dapat dibentuk menjadi sebuah balok.



Gambar 13. Proses Menentukan Volum Prisma Segitiga Siku-siku

Perhatikan gambar 13! Misalkan V merupakan volum prisma segitiga siku-siku dengan luas alas A. Jika dua buah prisma segitiga siku-siku digabungkan menurut sisi miring alas maka akan terbentuk sebuah balok dengan luas alas $2 \times A$.

$$2 \times V$$
 = volum balok
= luas alas × tinggi
= $(A + A) \times t$
= $2A \times t$

Sehingga diperoleh

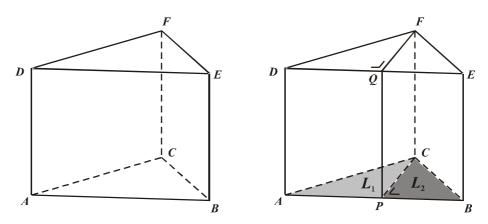
$$V = A \times t,$$

atau

volum prisma segitiga siku-siku = luas alas × tinggi.

b. Volum Prisma Segitiga Sembarang

Berdasarkan volum prisma segitiga siku-siku yang telah diperoleh, selanjutnya volum prisma segitiga sebarang dapat ditentukan dengan cara membagi prisma tersebut menjadi dua buah prisma segitiga siku-siku. Sebagai ilustrasi, pada gambar 14 diberikan prisma segitiga sebarang dengan alas segitiga *ABC* yang dibagi menjadi dua prisma segitiga-siku-siku dengan alas segitiga *APC* dan *CPB*.



Gambar 14. Volum Prisma Segitiga Sebarang Diperoleh dengan Membagi Prisma Menjadi Dua Buah Prisma Segitiga Siku-siku.

Misalkan volum prisma ABC.DEF, APC.DQF, dan CPB.FQE berturutturut dinyatakan sebagai $V_{ABC.DEF}$, $V_{APC.DQF}$ dan $V_{CPB.FQE}$ maka

$$V_{ABC.DEF}$$
 = $V_{APC.DQF} + V_{CPB.FQE}$
= luas $\Delta APC \times t + \text{luas } \Delta PCB \times t$
= $L_1 \times t + L_2 \times t$
= $(L_1 + L_2) \times t$
= luas $\Delta ABC \times \text{tinggi}$

Jadi, secara umum

volum prisma segitiga = luas alas × tinggi

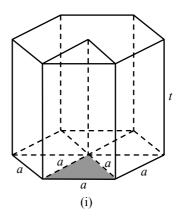
c. Volum Prisma Segienam dan Segi-n

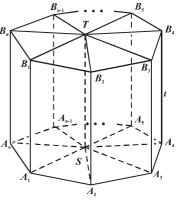
Setelah rumus volum prisma segitiga sebarang diketahui, selanjutnya

dapat diturunkan rumus untuk prisma segi-*n* dengan jalan membaginya menjadi prisma-prisma segitiga.

Sebagai contoh, misal diketahui prisma segienam beraturan dengan panjang rusuk alas *a* dan tinggi prisma *t* (gambar 15.(i)). Perhatikan bahwa alas segienam beraturan ini dapat dipecah menjadi enam buah segitiga samasisi dengan panjang sisi *a*. Dengan menggunakan teorema Pythagoras untuk menentukan tinggi segitiga, luas masing-masing segitiga dapat ditentukan yaitu

luas segitiga samasisi $=\frac{a^2}{4}\sqrt{3}$.





(ii)
Gambar 15. Volum prisma segienam dan segi-n

luas segienam beraturan $= 6 \times$ luas segitiga samasisi

$$=6\times\frac{a^2}{4}\sqrt{3}$$

$$=\frac{3}{2}a^2\sqrt{3}$$

sehingga,

volum prisma segienam beraturan
$$=\frac{3}{2}a^2\sqrt{3} \times t$$

 $=\frac{3}{2}a^2t\sqrt{3}$

Secara umum untuk prisma segi-n beraturan, misalkan: V menyatakan volum prisma segi-n beraturan, V_1 menyatakan volum prisma segitiga

 $A_1A_2S.B_1B_2T$, dan L_1 menyatakan luas A_1A_2S , V_2 menyatakan volum prisma segitiga $A_2A_3S.B_2B_3T$, dan L_2 menyatakan luas A_2A_3S , dan seterusnya untuk V_3 , V_4 , ..., sampai V_n yang menyatakan volum prisma segitiga $A_nA_1S.B_nB_1T$, dan L_n menyatakan luas A_nA_1S . Jika L menyatakan luas segi-n, maka

$$V = V_1 + V_2 + V_3 + \dots + V_n$$

$$= L_1 \times t + L_2 \times t + L_3 \times t + \dots + L_n \times t$$

$$= (L_1 + L_2 + L_3 + \dots + L_n) \times t$$

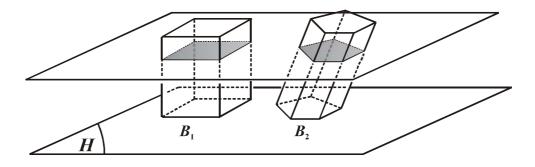
$$= L \times t.$$

Jadi, secara umum berlaku

volum limas segi-n = luas alas prisma × tinggi.

d. Prinsip Cavalieri

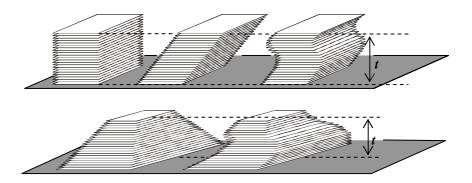
Misalkan dua bangun ruang B_1 dan B_2 terletak pada suatu bidang datar H. Jika setiap bidang yang sejajar H memotong kedua bangun ruang dan hasil perpotongannya mempunyai luas yang sama, maka volum B_1 = volum B_2



Gambar 16. Prinsip Cavalieri

Untuk memudahkan pemahaman tentang prinsip cavalieri, gunakan dua tumpukan kertas dengan tinggi yang sama! Satu tumpukan membentuk balok, sedang satu tumpukan lagi dibuat berkelok atau miring.

Perhatikan contoh pada gambar 17! Ketiga tumpukan kertas memiliki ketinggian yang sama. Jika setiap mengambil kertas ke-*n* dari bawah dari ketiga tumpukan diperoleh luas kertas yang sama, maka volum ketiga tumpukan tersebut sama besar.

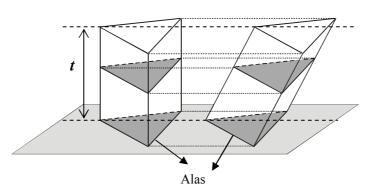


Gambar 17. Ilustrasi Prinsip Cavalieri dengan Tumpukan Kertas

e. Volum Prisma Miring

Untuk menentukan volum prisma miring, buat prisma tegak dengan alas dan tinggi yang sama dengan prisma miring tersebut! Jika setiap bidang sejajar alas memotong kedua prisma, diperoleh hasil perpotongan yang sama dan sebangun (sehingga luasnya sama). Sesuai dengan prinsip Cavalieri, maka volum kedua prisma sama. Dengan demikian, diperoleh

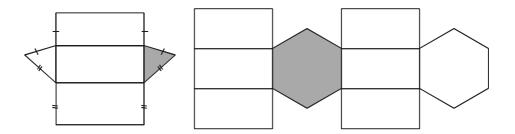
volum prisma miring = luas alas × tinggi



Gambar 18. Volum Prisma Miring

f. Jaring-jaring dan Luas Permukaan Prisma

Berikut ini merupakan contoh jaring-jaring prisma segitiga dan segienam beraturan.



Gambar 19. Jaring-jaring Prisma

Melalui ilustrasi dua jaring-jaring prisma di atas, maka luas permukaan prisma dapat ditentukan dengan jalan menjumlahkan luas sisi prisma, luas tutup, dan luas alas.

luas permukaan prisma = luas sisi prisma + luas alas + luas tutup luas permukaan prisma = (keliling alas \times tinggi prisma) + 2 \times luas alas

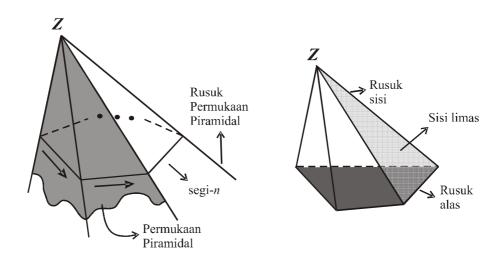
3. Kegiatan Belajar 3: Limas (Piramida)

Apakah yang dimaksud dengan limas? Bagaimana menentukan volum dan luas permukaannya? Pada bagian ini akan dibahas lebih jauh mengenai limas.

Jika sebuah sinar garis berpangkal di titik Z bergerak dengan titik pangkal tetap melalui ruas-ruas garis sisi segi-n, maka jejak yang terbentuk dinamakan **permukaan piramidal.** Sinar garis yang melalui titiksudut segi-n dinamakan sebagai **rusuk permukaan piramidal.** Segi-n bersama titik Z dan bagian permukaan piramidal yang terletak di antara keduanya beserta seluruh titik yang dibatasinya membentuk limas. Definisi lain menyebutkan, limas adalah suatu bangun ruang yang dibatasi oleh sebuah segi-n dan segitiga-segitiga yang mempunyai titik puncak persekutuan di luar bidang segi-n itu.

Segi-*n* dari limas ini dinamakan sebagai **alas**, titik *Z* disebut **puncak limas**, dan permukaan piramidal yang menjadi bagian dari limas dinamakan **sisi limas**. Ruas garis yang menghubungkan puncak dengan sudut-sudut alas dinamakan **rusuk sisi**, untuk membedakan dengan rusuk alas. **Tinggi limas** dinyatakan sebagai jarak terpendek antara titik puncak dengan bidang alas. Limas segi-*n* memiliki *n* buah rusuk sisi yang berbentuk segitiga, *n* buah rusuk sisi, dan *n* buah rusuk alas, sehingga banyak rusuk limas segi-*n* adalah 2*n*.

Jika alas limas berbentuk segi-*n* beraturan, maka dinamakan sebagai **limas** segi-*n* beraturan. Limas segi-*n* beraturan dikatakan sebagai limas tegak jika titik kaki garis tingginya terletak pada pusat alasnya. Limas segi-*n* beraturan memiliki *n* sisi berbentuk segitiga samakaki.



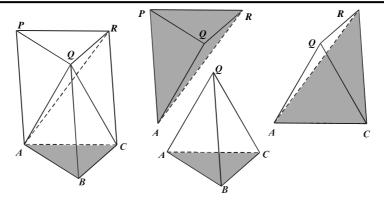
Gambar 20. Permukaan Piramidal

Gambar 21. Limas Segiempat

a. Volum Limas Segitiga

Perhatikan gambar 22 berikut ini! Berawal dari limas *Q.ABC*, lukis prisma segitiga *ABC.PQR* dengan rusuk sisi sejajar *BQ*! Volum prisma yang terbentuk ini sama dengan hasil kali luas segitiga *ABC* dengan tinggi limas.

volum prisma = luas $\triangle ABC \times \text{tinggi limas}$



Gambar 22. Volum Limas *Q.ABC*

Lukis diagonal AR pada jajargenjang ACRP. Selanjutnya prisma ini dipecah menjadi 3 limas yaitu limas Q.ABC, Q.APR, dan Q.ACR.

Perhatikan limas *Q.APR*! Limas ini dapat pula dipandang sebagai limas dengan puncak *A* dan alas segitiga *PQR*. Karena segitiga *PQR* kongruen dengan segitiga *ABC*, dan tinggi limas *A.PQR* dengan *Q.ABC* sama, maka dengan prinsip Cavalieri diperoleh

$$volum Q.ABC = volum A.PQR = volum Q.APR$$

Berikutnya, perhatikan limas *Q.APR* dan *Q.ACR*! Kedua limas ini merupakan hasil pemisahan limas *Q.ACRP* dengan alas berbentuk persegipanjang *ACRP* menurut bidang *AQR*. Dengan demikian, kedua limas *Q.APR* dan *Q.ACR* memiliki alas yang kongruen dan tinggi yang sama, sehingga

$$volum Q.APR = volum Q.ACR$$

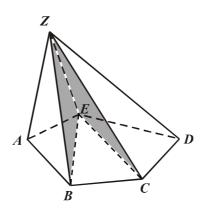
Akibatnya, ketiga limas *Q.ABC*, *Q.APR* dan *Q.ACR* memiliki volum yang sama. Dengan demikian

volum
$$Q.ABC = \frac{1}{3} \times \text{volum prisma } ABC.PQR$$

= $\frac{1}{3} \times \text{luas alas} \times \text{tinggi.}$

b. Volum Limas Segi-*n*

Seperti pada penurunan rumus prisma, setelah ditemukan rumus volum limas segitiga, selanjutnya volum limas segi-*n* dapat diturunkan dengan jalan memecah limas ini menjadi limas-limas segitiga.



Gambar 23. Limas Segilima yang Dipecah Menjadi Tiga Limas Segitiga.

Sebagai contoh perhatikan limas segilima Z.ABCDE pada gambar 23! Misalkan V menyatakan volum limas Z.ABCDE, V_1 menyatakan volum limas Z.ABE, V_2 menyatakan volum limas Z.BEC, V_3 menyatakan volum limas Z.ECD, dan t menyatakan tinggi limas, maka:

$$V = V_1 + V_2 + V_3$$

$$V = \frac{1}{3} \times \text{luas } \Delta ABE \times t + \frac{1}{3} \times \text{luas } \Delta BCE \times t \frac{1}{3} \times \text{luas } \Delta CDE \times t$$

$$V = \frac{1}{3} \times (\text{luas } \Delta ABE + \text{luas } \Delta BCE + \text{luas } \Delta CDE) \times t$$

$$V = \frac{1}{3} \times \text{luas } ABCDE \times t$$

Secara umum limas segi-*n* selalu dapat dipecah menjadi limas-limas segitiga yang mempunyai tinggi sama dengan tinggi limas yang diberikan. Dengan demikian, volum prisma segi-*n* dengan tinggi *t* adalah

volum limas =
$$\frac{1}{3} \times \text{luas alas} \times t$$

Percobaan untuk menunjukkan kebenaran rumus volum limas dapat dilakukan melalui peragaan menakar menggunakan sebuah limas dan sebuah prisma pasangannya. Dalam hal ini dikatakan limas dan prisma yang berpasangan jika kedua alas bangun tersebut kongruen dan tinggi kedua bangun sama. Melalui praktek didapatkan bahwa ternyata prisma dipenuhi oleh tiga takaran limas. Akibatnya

volum prisma =
$$3 \times \text{volum limas}$$

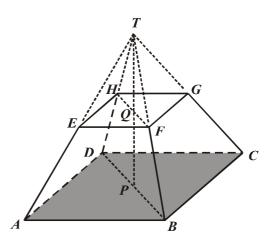
volum limas = $\frac{1}{3} \times \text{volum limas}$
= $\frac{1}{3} \times \text{luas alas} \times \text{tinggi}$

c. Volum Limas Terpancung

Misalkan α bidang sejajar alas yang terletak di antara puncak dan alas limas, maka yang dimaksud dengan **limas terpancung** adalah hasil perpotongan limas dengan bidang α bersama-sama dengan alas dan sisi limas yang terletak di antara bidang α dan alas. Pada gambar 24 diberikan

limas tegak persegi yang dipotong oleh bidang sejajar alas sehingga membentuk limas terpancung *ABCD.EFGH*.

Untuk mencari volum limas terpancung diperlukan teorema berikut.



Gambar 24. Limas Persegi Terpancung

Teorema:

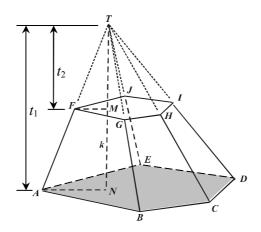
Misalkan PQR dan STU dua segitiga yang sebangun dengan PQ dan ST sisi-sisi yang bersesuaian, maka berlaku

luas PQR: luas $STU = PQ^2$: ST^2

Bukti teorema diserahkan ke pembaca sebagai bahan latihan tentang geometri datar.

Teorema yang terkait dengan perbandingan luas di atas berlaku juga untuk segibanyak, sehingga misalkan *ABCDE* dan *FGHIJ* dua segilima yang sebangun dengan *AB* dan *FG* sisi-sisi yang bersesuaian seperti ditunjukkan dalam gambar 25, maka berlaku

luas ABCDE: luas $FGHIJ = AB^2$: FG^2



Gambar 25. Limas Segilima Terpancung

Pandang limas terpancung *ABCDE.FGHIJ*. Segilima *ABCDE* sebangun dengan *FGHIJ*. Akibatnya, menurut teorema di atas berlaku

luas
$$ABCDE$$
: luas $FGHIJ = AB^2 : FG^2$(i)

Perhatikan bahwa segitiga *TAB* sebangun dengan *TFG*, sehingga berlaku

$$AB^2: FG^2 = TA^2: TF^2.$$
 (ii)

TN merupakan tinggi limas. Perhatikan bahwa segitiga TAN sebangun dengan segitiga TFM! Akibatnya,

$$TA^2 : TF^2 = TN^2 : TM^2$$
 (iii)

Dari (i), (ii), dan (iii) dapat disimpulkan bahwa

luas
$$ABCDE$$
: luas $FGHIJ = TN^2$: TM^2(iv)

Tanpa mengurangi keumuman untuk limas segi-n, misalkan limas segilima terpancung pada gambar 25 diketahui $TN = t_1$, $TM = t_2$, $k = t_1 - t_2$, luas $ABCDE = L_1$ dan luas $FGHIJ = L_2$, menurut persamaan

(iv) berlaku
$$L_1: L_2 = t_1^2: t_2^2$$
. Misalkan $\frac{L_1}{t_1^2} = \frac{L_2}{t_2^2} = m$, untuk suatu nilai m .

Akibatnya, $L_1 = mt_1^2$ dan $L_2 = mt_2^2$ sehingga

volum limas T.ABCDE – volum limas T.FGHIJ.

$$V_{\text{limas terpancung}} = V_{TABCDE} - V_{TFGHIJ}$$

$$= \frac{1}{3}L_1t_1 - \frac{1}{3}L_2t_1$$

$$= \frac{1}{3}(t_1^3 - t_2^3)m$$

$$= \frac{1}{3}(t_1 - t_2)(t_1^2 + t_1t_2 + t_2^2)m$$

$$= \frac{1}{3}k(mt_1^2 + \sqrt{mt_1^2mt_2^2} + mt_2^2)$$

$$= \frac{1}{3}k(L_1 + \sqrt{L_1L_2} + L_2)$$

Jadi

volum limas terpancung =
$$\frac{1}{3}k(L_1 + \sqrt{L_1L_2} + L_2)$$

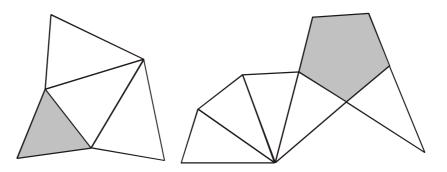
dengan: k = jarak tutup ke bidang alas,

 L_1 = luas tutup, dan

 L_2 = luas alas.

d. Jaring-jaring dan Luas Permukaan Limas

Berikut ini merupakan contoh jaring-jaring limas segitiga dan segilima beraturan.



Gambar 26. Jaring-jaring Limas Segitiga dan Segilima

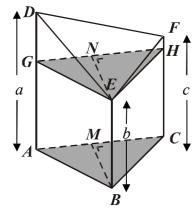
Melalui ilustrasi dua jaring-jaring limas di atas, luas permukaan limas dapat ditentukan dengan menjumlahkan luas sisi limas dan alasnya.

luas permukaan limas = luas seluruh sisi limas + luas alas

e. Volum Prisma Segitiga Terpancung

Jika sebuah prisma segitiga dipotong oleh bidang yang tidak sejajar alas, maka akan diperoleh bangun yang dinamakan **prisma segitiga terpancung.**

Pada gambar 27 diberikan prisma tegak segitiga terpancung. Misalkan luas alas prisma dinyatakan sebagai L_{ABC} serta panjang AD, BE dan CF berturutturut sebagai a, b, dan c. Pandang segitiga ABC dengan alas AC dan tinggi segitiga MB. Maka, luas segitiga ABC dapat dinyatakan sebagai



Gambar 27. Prisma Segitiga Terpancung

$$L_{\Delta ABC} = \frac{AC \times MB}{2}$$
 atau $MB = \frac{2L_{\Delta ABC}}{AC}$ (i)

Untuk mencari volum prisma terpancung, terlebih dahulu prisma ini dipisah menjadi dua bagian dengan membentuk sebuah prisma dengan

rusuk sisi terpendek sebagai rusuk sisinya (dalam hal ini rusuk *BE* sehingga terbentuk prisma *ABCGEH*) dan sebuah limas (dalam hal ini limas trapesium siku *E.DGHF*).

volum prisma
$$ABC.GEH = luas \Delta ABC \times BE$$

$$= L_{\Delta ABC} \times BE$$

Perhatikan limas *E.DGHF*! Bidang *GEH* tegak lurus terhadap bidang *DGHF*, sehingga garis tinggi segitiga *GEH* sekaligus menjadi garis tinggi limas *E.DGHF*. Sementara itu, *GEH* kongruen dengan *ABC*, sehingga

tinggi limas
$$E.DGHF = NE = MB$$
.

Panjang
$$AG = BE = CH = b$$
, sehingga $DG = a - b$ dan $HF = c - b$.

Dari sini diperoleh

luas trapesium
$$DGHF = \frac{1}{2} \times (DG + FH) \times GH$$

luas
$$DGHF = \frac{1}{2} \times ((a-b) + (c-b)) \times GH$$

$$= \frac{1}{2} \times (a-b+c-b) \times AC = \frac{1}{2} \times (a+c-2b) \times AC$$

volum limas $E.DGFH = \frac{1}{3} \times \text{luas } DGHF \times NE$

$$= \frac{1}{3} \times \frac{1}{2} \times (a + c - 2b) \times AC \times MB$$

$$= \frac{1}{6} \times (a + c - 2b) \times AC \times \frac{2L_{\Delta ABC}}{AC}$$

$$= \frac{1}{3} \times (a+c-2b) \times L_{\Delta ABC}.$$

volum prisma terpancung = volum prisma *ABC.GEH* + volum limas *E.DGHF*

$$\begin{split} &= L_{\Delta ABC} \times b + \frac{1}{3} \times (a + c - 2b) \times L_{\Delta ABC} \\ &= L_{\Delta ABC} b + \frac{1}{3} a L_{\Delta ABC} + \frac{1}{3} c L_{\Delta ABC} - \frac{2}{3} b L_{\Delta ABC} \\ &= \frac{1}{3} (a + b + c) L_{\Delta ABC} \,. \end{split}$$

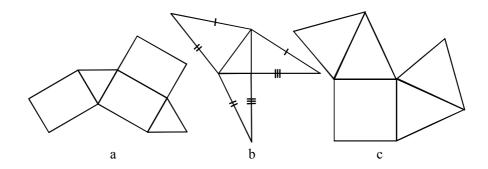
Jadi,

volum prisma segitiga terpancung =
$$\frac{1}{3}(a+b+c)L_{\Delta ABC}$$

dengan a, b, dan c panjang rusuk-rusuk sisi serta $L_{\Delta ABC}$ menyatakan luas penampang siku-siku prisma.

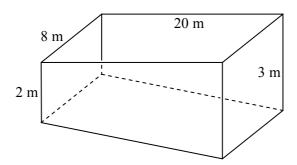
D. Latihan 1

- 1. Disediakan kawat yang panjangnya 60 cm untuk membuat model kerangka balok.
 - a. Jika panjang model kerangka tersebut 6 cm dan lebarnya 5 cm, berapakah tingginya?
 - b. Jika lebar dan tinggi model kerangka tersebut sama, yaitu 4 cm, berapakah panjangnya?
 - c. Jika akan dibuat model kerangka kubus, berapakah panjang rusuknya?
- 2. Sebuah kerangka kandang ayam berbentuk balok terbuat dari kayu dengan ukuran 3 m \times 2 m \times 0,8 m. Bila panjang kayu yang tersedia 25 m, berapa meter kayu yang tidak terpakai?
- 3. Dari rangkaian daerah gambar-gambar berikut, manakah yang bukan merupakan jaring-jaring suatu bangun ruang?



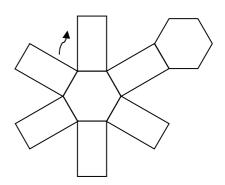
- 4. Gambarlah balok *PQRS.TUVW*! Gambarlah jaring-jaring balok serta beri nama untuk setiap titik sudutnya, jika balok itu diiris sepanjang rusuk-rusuk
 - a. UT, TP, UV, VW, WS, UQ, dan VR!
 - b. TU, UV, VR, TW, WS, TP, dan UQ!
- 5. Diketahui balok dengan ukuran panjang 6 cm, lebar 5 cm, dan tinggi 4 cm.
 - a. Berapa volum balok tersebut?
 - b. Jika panjang, lebar, dan tinggi balok bertambah 2 cm, berapakah volum balok sekarang? Berapa pertambahan volumnya?
 - c. Jika panjang bertambah 4 cm, lebar bertambah 3 cm, dan tinggi bertambah 2 cm, berapakah volum balok sekarang? Berapakah pertambahan volumnya?
- 6. Diketahui balok dengan ukuran panjang p cm, lebar l cm dan tinggi t cm.
 - a. Berapa volum balok tersebut?
 - b. Jika panjang, lebar, dan tinggi balok bertambah *x* cm, berapakah volum balok sekarang? Berapa pertambahan volumnya?
 - c. Jika panjang bertambah *x* cm, lebar bertambah *y* cm, dan tinggi bertambah *z* cm, berapakah volum balok sekarang? Berapakah pertambahan volumnya?
- 7. Panjang dan lebar sebuah kolam renang berturut-turut adalah 20 meter dan 8 meter. Kedalaman paling dangkal dan paling dalam pada kolam renang ini berturut-turut adalah 2 meter dan 3 meter (lihat gambar).

a. Berapakah volum air yang dapat ditampung?



- b. Jika kolam ini hanya diisi air sebanyak 90 persen dari volum yang dapat ditampung, berapakah ketinggian air di bagian yang paling dangkal?
- 8. Sebuah limas tegak persegi mempunyai panjang rusuk alas 6 cm dan panjang rusuk sisi 5 cm. Berapakah luas permukaan dan volum limas tersebut?
- 9. Diberikan sebuah limas tegak persegi dengan tinggi *t* dan panjang rusuk alas 2*a*. Nyatakan luas permukaan limas dalam *a* dan *t*!
- 10. Sebuah kubus dengan panjang rusuk 15 cm dicat pada seluruh permukaannya. Kubus ini selanjutnya dipotong-potong menjadi kubus kecil dengan panjang rusuk 5 cm.
 - a. Ada berapa kubus kecil yang terbentuk?
 - b. Berapa kubus kecil yang seluruh permukaannya tidak terkena cat?
 - c. Berapa kubus kecil yang kena cat hanya pada satu sisinya?
 - d. Berapa kubus kecil yang kena cat hanya pada dua sisinya?
 - e. Berapa kubus kecil yang kena cat hanya pada tiga sisinya?
 - f. Dari seluruh kubus kecil yang terbentuk, berapa total luas permukaan yang tidak terkena cat?
- 11. Sebuah bak air berbentuk limas persegi terpancung. Panjang rusuk alas 40 cm dan panjang rusuk bagian atas 20 cm. Jika tinggi limas terpancung 40 cm, berapa volum air yang dapat ditampung?

12. Di samping ini adalah gambar jaring-jaring yang disusun dari enam buah persegipanjang yang kongruen dan dua buah segienam beraturan yang kongruen. Berapakah banyak rusuk bangun ruang yang terbentuk?



E. Refleksi

Setelah Anda mempelajari materi bangun ruang dengan sisi datar di atas, beberapa pertanyaan berikut mungkin dapat anda renungkan sebagai bahan refleksi.

- 1. Dapatkah Anda menjelaskan apa yang dimaksud dengan bangun ruang sisi datar, kubus, limas, prisma, limas terpancung, dan prisma terpancung?
- 2. Untuk memperagakan proses mendapatkan rumus volum bangun ruang, seringkali dilakukan percobaan empiris dengan menakar. Selain melalui percobaan tersebut, mampukah Anda menurunkan rumus-rumus volum bangun ruang secara deduktif?
- 3. Sudahkah Anda menyelesaikan latihan 1 di atas dengan benar dan hasilnya sesuai dengan kunci jawaban di dalam lampiran?

Masih adakah bagian yang belum Anda pahami? Jika masih ada, silakan Anda mempelajarinya kembali atau mendiskusikannya dengan teman sejawat/fasilitator Anda hingga benar-benar paham!

BAB III BANGUN RUANG DENGAN SISI LENGKUNG

A. Pengantar

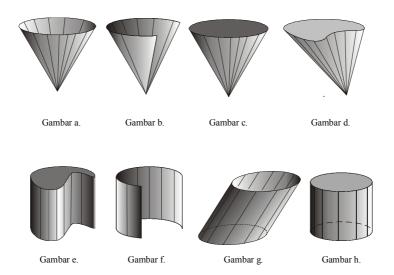
Bangun-bangun ruang di sekitar kita yang terkategori bangun ruang dengan sisi datar telah kita pelajari. Bangun-bangun ruang yang lain terkategori bangun ruang dengan sisi lengkung. Yang termasuk dalam kategori bangun ruang sisi lengkung adalah bangun ruang yang paling tidak memiliki satu sisi lengkung. Beberapa bangun ruang sisi lengkung mungkin sulit didefinisikan secara tepat, namun bangun ruang tersebut dapat diidentifikasi melalui sifat-sifat atau proses terbentuknya. Selain konsep bangun ruang sisi lengkung, terutama kerucut, tabung, dan bola, dibahas beberapa hal yang terkait dengannya seperti luas permukaan dan volum. Pada bagian ini juga akan dibahas materi pengayaan seperti kerucut terpancung dan tabung terpancung.

B. Tujuan Pembelajaran

Setelah mempelajari bagian ini, diharapkan pengguna modul lebih menguasai konsep-konsep bangun ruang dengan sisi lengkung, yang tercakup di dalamnya pengertian bangun kerucut, tabung dan bola, dengan perhitungan-perhitungan luas dan volumnya.

C. Kegiatan Belajar

Perhatikan gambar berikut ini! Manakah yang merupakan kerucut? Manakah yang merupakan tabung?



Dari gambar di atas, yang menunjukkan gambar kerucut adalah gambar c dan d, sementara itu yang menunjukkan gambar tabung adalah gambar e dan h. Menurut pengalaman penulis, masih terdapat guru/siswa yang beranggapan bahwa hanya gambar c saja yang merupakan kerucut.

Selanjutnya, kegiatan belajar bangun ruang dengan sisi lengkung diuraikan menjadi 3 kegiatan belajar, yaitu kegiatan belajar 1: tabung (silinder), kegiatan belajar 2: kerucut, dan kegiatan belajar 3: bola.

1. Kegiatan Belajar 1: Tabung (Silinder)

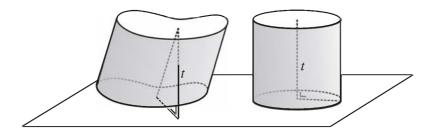
Apa yang dimaksud dengan tabung? Apa yang disebut dengan selimut tabung, dan bagaimana menentukan volum tabung secara deduktif? Pada bagian ini akan dibahas mengenai bangun ruang sisi lengkung, khususnya tabung.

Jika sebuah garis dengan arah yang tetap bergerak di dalam ruang sepanjang kurva lengkung, maka jejak yang ditimbulkan membentuk permukaan silindris. Kurva lengkung ini dinamakan **garis arah** dan garis yang bergerak dinamakan sebagai **garis pelukis**. Sama seperti prisma, jika permukaan

silindris dengan garis arah kurva tertutup sederhana dipotong oleh dua buah bidang yang sejajar, maka kedua hasil perpotongan bersama-sama dengan permukaan silindris di antara keduanya beserta seluruh titik yang dibatasinya membentuk tabung. Bagian sisi silindris yang terletak di antara dua bidang sejajar dinamakan sebagai **sisi tabung** yang berupa sisi lengkung. Bagian silinder yang merupakan perpotongan permukaan silindris dengan dua bidang sejajar dinamakan sebagai **alas** dan **tutup**. Alas dan tutup tabung mempunyai bentuk kongruen. Jarak antara bidang alas dan bidang tutup dinyatakan sebagai **tinggi tabung**. Tabung memiliki dua rusuk berbentuk kurva lengkung yang sekaligus merupakan batas dari alas atau tutupnya.

Jika di setiap titik pada rusuk, sudut antara bidang alas dan sisi lengkung membentuk sudut siku-siku, maka tabung yang demikian dinamakan sebagai **tabung tegak**. Selain berdasarkan sudut antara alas dan sisi lengkung, jenis tabung ditentukan juga oleh bentuk alasnya. Sebagai contoh, tabung dengan alas berbentuk ellips dinamakan sebagai tabung ellips dan tabung dengan alas lingkaran dinamakan sebagai **tabung lingkaran.** Selanjutnya dalam modul ini, jika tidak diberi penjelasan, maka yang dimaksud dengan tabung adalah tabung lingkaran tegak.

Tabung lingkaran tegak dapat juga didefinisikan sebagai bangun ruang yang dihasilkan oleh perputaran persegipanjang dengan sumbu putar salah satu sisinya. Tabung dapat juga dipandang sebagai prisma segi-n beraturan dengan n tak hingga.



Gambar 28. Tabung Miring dan Tabung Lingkaran Tegak

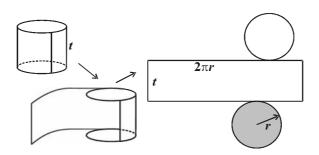
a. Volum Tabung

Pikirkan sebuah prisma tegak segi-n beraturan! Jika banyak rusuk alas diperbanyak tanpa batas, maka segi-n ini akan menjadi lingkaran. Dengan memandang tabung sebagai prisma segi-n beraturan dengan n tak hingga, dapat diturunkan rumus untuk volum tabung dengan tinggi t dan jari-jari alas r.

volum tabung = luas alas × tinggi.
= luas lingkaran × tinggi
=
$$\pi r^2 t$$
.

b. Luas Permukaan Tabung

Perhatikan gambar bukaan tabung pada gambar 29! Sisi lengkung (selimut) tabung jika dibuka akan membentuk persegipanjang dengan panjang sisi = keliling lingkaran alas dan lebar = t, sehingga



Gambar 29. Bukaan Tabung

luas sisi lengkung tabung = $2\pi rt$. luas permukaan tabung = luas alas + luas tutup + luas sisi lengkung tabung = $2\pi r^2 + 2\pi rt$.

Jadi,

luas permukaan tabung = $2\pi r(r+t)$.

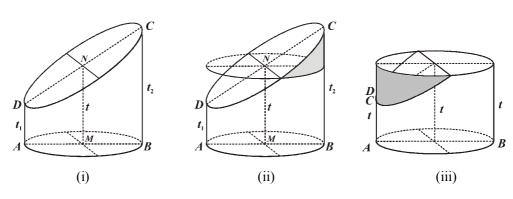
c. Tabung Terpancung

Jika sebuah tabung dipotong oleh bidang yang tidak sejajar alas, akan diperoleh tabung terpancung (gambar 30.(i)). Misalkan tabung terpancung dipotong oleh bidang sejajar alas melalui titik N (Gambar 30.(ii)) dan hasil potongannya diletakkan sehingga terbentuk sebuah tabung (gambar 30.(iii)). Akibatnya, luas sisi lengkung bangun gambar 30.(i) dan (iii) sama besar. Demikian juga dengan volum kedua bangun ruang tersebut.

luas sisi lengkung =
$$2\pi r \times \frac{t_1 + t_2}{2}$$

$$= \pi r \times (t_1 + t_2)$$

volum tabung terpancung =
$$\pi r^2 \times \frac{t_1 + t_2}{2}$$



Gambar 30. Tabung terpancung

2. Kegiatan Belajar 2: Kerucut

Apa yang dimaksud dengan kerucut? Bagaimana menentukan volum kerucut secara deduktif? Pada bagian ini akan dibahas mengenai bangun ruang sisi lengkung kerucut.

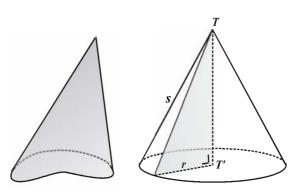
Misal diberikan sebuah kurva lengkung yang terletak pada sebuah bidang datar dan sebuah titik T yang tidak sebidang dengannya. Jika sebuah garis melalui titik T dan bergerak sepanjang kurva lengkung, maka jejak yang

dihasilkan membentuk *conical survace*. Kurva lengkung ini diarahkan sebagai garis arah dan garis yang bergerak dinamakan **garis pelukis**. Bangun ruang yang dihasilkan dari proses ini disebut kerucut.

Jadi **kerucut** merupakan bangun yang dibatasi oleh kurva lengkung tertutup sederhana sebagai alas, bagian kurva lengkung yang terletak diantara T dan alas, beserta seluruh daerah yang dibatasinya.

Kerucut dapat dipandang sebagai limas segi-n dengan n tak hingga. Pada gambar 31.a, titik T dinamakan sebagai titik puncak, sedangkan garis s, yaitu garis yang menghubungkan puncak ke kurva alas, dinamakan sebagai **garis pelukis**. Jenis kerucut dapat dibedakan berdasarkan bentuk alas, seperti

kerucut lingkaran, kerucut ellips, dan kerucut jenis lainnya. Sementara itu, berdasarkan pusat alas kerucut T, jika TT tegak lurus terhadap bidang alas, maka dikatakan sebagai **kerucut lingkaran tegak**.



Gambar 31.a. Kerucut dan Kerucut Lingkaran Tegak

Kerucut lingkaran tegak dapat dipandang sebagai hasil rotasi satu putaran segitiga siku-siku dengan sumbu rotasi salah satu sisi siku-sikunya. Jika tanpa diberi keterangan, yang dimaksud kerucut dalam modul ini adalah kerucut lingkaran tegak.

a. Volum Kerucut

Dengan memandang kerucut dengan jari-jari alas r dan tinggi t sebagai limas segi-n beraturan untuk n tak hingga, maka volum kerucut dapat ditentukan.

volum kerucut =
$$\frac{1}{3}$$
 × luas alas × tinggi.
= $\frac{1}{3}$ × π × r^2 × t .

Kebenaran rumus volum kerucut ini dapat ditunjukkan dengan menggunakan peragaan menakar dengan menggunakan takaran kerucut dengan tabung pasangannya. Pasangan kerucut dan tabung ini memiliki alas yang kongruen dan tinggi yang sama. Melalui penakaran pasir ternyata tabung akan penuh setelah diisi 3 kali takaran kerucut. Dengan demikian,

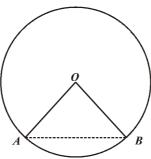
$$3 \times \text{volum kerucut} = \text{volum tabung}$$

volum kerucut
$$=\frac{1}{3} \times \text{volum tabung} = \frac{1}{3} \times \text{luas alas} \times \text{tinggi}$$

 $=\frac{1}{3} \times \pi \times r^2 \times t$.

b. Luas Permukaan Kerucut

Sebelum membahas luas permukaan kerucut, ingat kembali tentang luas sektor lingkaran!



Jika dua buah jari-jari lingkaran membentuk sudut 1° dan dipotong, maka

- i. busur AB mempunyai panjang $\frac{1}{360}$ keliling lingkaran, dan
- ii. luas sektor $AOB = \frac{1}{360}$ luas lingkaran.

Jadi, jika sudut AOB memiliki besar D° , maka

i. panjang busur
$$AB = \frac{D}{360} \times \text{keliling lingkaran, dan}$$

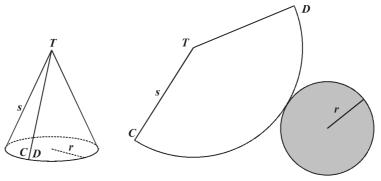
ii. luas sektor
$$AOB = \frac{D}{360} \times \text{luas lingkaran}$$

$$= \frac{D}{360} \times \pi \times r \times r$$

$$= \frac{D}{360} \times \frac{1}{2} \times \text{keliling lingkaran} \times r$$

$$= \frac{1}{2} \times \text{panjang busur } AB \times r$$

Untuk menemukan luas selimut (permukaan lengkung) kerucut, perhatikan ilustrasi berikut!



Gambar 31.b. Bukaan Kerucut

Misalkan sebuah kerucut dipotong sepanjang garis pelukis *TC* dan kemudian dibuka di sebuah bidang datar. Hasilnya berupa sebuah sektor lingkaran *TCD* dengan jari-jari *TC* dan busur *CD*. Busur *CD* ini sekaligus merupakan keliling lingkaran alas.

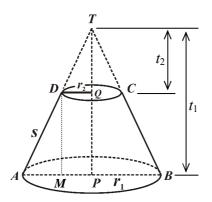
luas selimut
$$=\frac{1}{2} \times \text{panjang busur } CD \times TC \dots \text{ (lihat (i))}$$

 $=\frac{1}{2} \times 2\pi r \times s$

luas selimut $= \pi rs$.

c. Volum Kerucut Terpancung

Jika sebuah kerucut dipotong oleh sebuah bidang sejajar alas di antara titik puncak dan bidang alas, maka bagian kerucut yang dibatasi oleh bidang pemotong dan bidang alas dinamakan sebagai **kerucut terpancung.**



Gambar 32. Kerucut Terpancung

Perhatikan gambar 32! Misalkan luas alas dan tutup kerucut terpancung adalah L_1 dan L_2 , $TP = t_1$, dan $TQ = t_2$.

Menurut persamaan (i) seperti dalam pembahasan limas terpancung pada bab II, berlaku $L_1:L_2=t_1^2:t_2^2$.

Misalkan
$$\frac{L_1}{L_2} = \frac{t_1^2}{t_2^2} = m$$
, untuk suatu

nilai m. Akibatnya, $L_1 = mt_1^2$ dan $L_2 = mt_2^2$.

volum kerucut terpancung = volum kerucut TAB - volum kerucut TDC

Dengan proses yang sama seperti pada penentuan volum limas terpancung, diperoleh

volum kerucut terpancung =
$$\frac{1}{3}k(L_1 + \sqrt{L_1L_2} + L_2)$$

Atau dengan mensubstitusikan $L_1 = \pi r_1^2$ dan $L_2 = \pi r_2^2$, diperoleh

volum kerucut terpancung =
$$\frac{1}{3}k\pi(r_1^2 + r_1 r_2 + r_2^2)$$

dengan k = jarak tutup ke bidang alas,

 L_1 = Luas tutup,

 L_2 = Luas alas,

 r_1 = jari-jari lingkaran alas, dan

 r_2 = jari-jari lingkaran tutup.

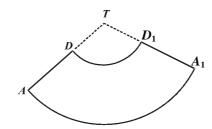
d. Luas Selimut Kerucut Terpancung

Perhatikan segitiga *TDQ*, *TAP*, dan *DAM* pada gambar 32! Ketiga segitiga ini sebangun (mengapa?). Akibatnya berlaku:

$$\frac{TD}{DQ} = \frac{TA}{AP} = \frac{DA}{AM}$$

$$\frac{TD}{r_2} = \frac{TA}{r_1} = \frac{s}{r_1 - r_2}$$

sehingga $TD = \frac{r_2 s}{r_1 - r_2}$ dan $TA = \frac{r_1 s}{r_1 - r_2}$.



Gambar 33. Bukaan Selimut Kerucut Terpancung

Perhatikan gambar 33 di atas! misal L_{KT} menyatakan luas selimut kerucut terpancung sehingga

$$L_{KT}$$
 = luas sektor TAA_1 – luas sektor TDD_1 .

Sementara itu,

luas sektor
$$TAA_1 = \frac{1}{2} \times \text{panjang busur } AA_1 \times TA$$

$$= \frac{1}{2} \times 2\pi r_1 \times TA, \text{ dan}$$
luas sektor $TDD_1 = \frac{1}{2} \times \text{panjang busur } DD_1 \times TD$

$$= \frac{1}{2} \times 2\pi r_2 \times TD,$$

sehingga

$$L_{KT} = \pi r_1 \times TA - \pi r_2 \times TD$$

$$= \pi r_1 \times \frac{r_1 s}{r_1 - r_2} - \pi r_2 \times \frac{r_2 s}{r_1 - r_2}$$

$$= \pi s \left(\frac{r_1^2 - r_2^2}{r_1 - r_2}\right)$$

$$= \pi s \left(\frac{(r_1 - r_2)(r_1 + r_2)}{r_1 - r_2}\right)$$

$$= \pi s (r_1 + r_2).$$

Jadi,

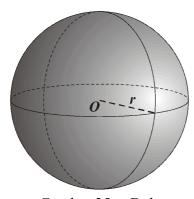
$$L_{KT} = \pi s(r_1 + r_2)$$

Atau dapat juga dituliskan

 L_{KT} = (setengah jumlah keliling alas dan tutup) × panjang garis pelukis

3. Kegiatan Belajar 3: Bola

Apa yang disebut dengan bola? Bagaimana cara menentukan volum bola secara deduktif? Pada bagian ini akan dibahas mengenai bangun ruang sisi lengkung, khususnya bola.



Gambar 35.a. Bola

Jika setengah lingkaran dirotasikan mengelilingi diameternya, maka akan terbentuk sebuah permukaan bola. Permukaan bola dapat juga didefinisikan sebagai tempat kedudukan titiktitik yang berjarak sama terhadap suatu titik tertentu yang dinamakan sebagai **pusat bola**. Benda yang dibatasi oleh permukaan bola dinamakan sebagai **bola**. Perpotongan antara

sebuah bidang datar dengan bola akan membentuk lingkaran. Lingkaran terbesar merupakan lingkaran yang diperoleh jika bidang pemotong melalui pusat lingkaran.

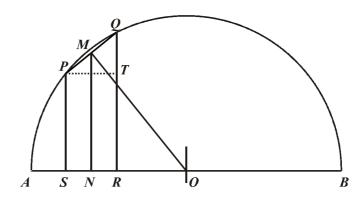
a. Luas Permukaan Bola

Perhatikan gambar 35.b., misalkan sebuah bola berpusat di *O* dihasilkan oleh setengah lingkaran *APB* dengan diameter *AB* yang diputar dengan sumbu putar *AB*. Pandang *PQ* sebagai bagian dari poligon beraturan dengan banyak sisi yang sangat banyak di dalam lingkaran.

Karena busur APB diputar mengelilingi AB, maka PQ akan membentuk kerucut terpancung. Misalkan luas kerucut terpancung ini L_{PQ} , sehingga

 L_{PQ} = (setengah jumlah keliling alas dan tutup) × panjang garis pelukis

$$L_{PO} = \pi (PS + QR) \times PQ = \pi \times 2 \times MN \times PQ$$



Gambar 35.b. Penampang Melintang Setengah Bola

Pada gambar 35.b, perhatikan bahwa segitiga PTQ dan MNO sebangun (mengapa?) sehingga berlaku $\frac{PT}{PQ} = \frac{MN}{MO}$. Karena PT = SR dan MO = r, akibatnya

$$\frac{SR}{PQ} = \frac{MN}{r}$$

$$PQ = \frac{SR \times r}{MN}$$

sehingga

$$L_{PQ} = \pi \times 2 \times MN \times PQ$$
$$= 2 \times \pi \times MN \times \frac{SR \times r}{MN}$$
$$= 2\pi \times SR \times r$$

atau

$$L_{PQ} = 2\pi r \times (\text{proyeksi } PQ \text{ ke } AB)$$

Dengan memandang busur lingkaran sebagai poligon dengan sisi tak hingga, maka luas permukaan lingkaran dapat dipandang sebagai jumlah luas selimut kerucut-kerucut terpancung dengan garis pelukis sisi-sisi poligon. Akibatnya,

luas permukaan bola =
$$2\pi r \times (\text{proyeksi busur } APB \text{ ke } AB)$$

= $2\pi r \times 2r$

Jadi

luas permukaan bola =
$$4\pi r^2$$

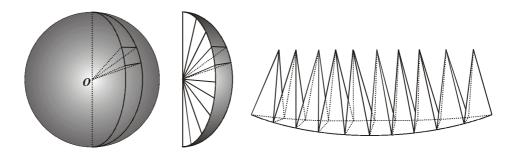
Percobaan untuk menunjukkan kebenaran rumus luas permukaan bola dapat dilakukan dengan melilitkan tali ke selimut setengah bola, kemudian lilitan ini dibuka dan dililitkan lagi ke lingkaran dengan jari-jari yang sama dengan jari-jari bola. Dari percobaan ini diperoleh tali yang dililitkan ke selimut setengah bola yang jika dililitkan ke lingkaran akan diperoleh dua lingkaran penuh, sehingga dapat dikatakan

luas selimut setengah bola =
$$2 \times$$
 luas lingkaran = $2 \pi r^2$

Dengan demikian,

luas selimut bola =
$$4 \pi r^2$$
.

b. Volum Bola



Gambar 36. Bola Diiris untuk Menentukan Volumnya

Misalkan sebuah bola dipotong membentuk limas-limas dengan titik puncak di pusat bola seperti pada gambar 36. Perhatikan bahwa limas-limas yang terbentuk mempunyai tinggi yang sama, yaitu jari-jari bola (r)! Misalkan luas alas masing-masing limas dinyatakan sebagai L_1, L_2, L_3, \ldots , dan L_n . Jika alas limas dibuat sekecil-kecilnya, dengan kata lain n dibuat sebesar-besarnya (n tak hingga), maka jumlah luas alas seluruh limas akan sama dengan luas permukaan bola.

volum bola = jumlah volum seluruh limas

$$= \frac{1}{3} \times L_1 \times r + \frac{1}{3} \times L_2 \times r + \dots + \frac{1}{3} \times L_n \times r$$

$$= \frac{1}{3} \times (L_1 + L_2 + L_3 + \dots + L_n) \times r$$

$$= \frac{1}{3} \times (\text{luas permukaan bola}) \times r$$

$$= \frac{1}{3} \times 4\pi \times r^3$$

Jadi untuk bola dengan jari-jari r berlaku

volum bola =
$$\frac{4}{3}\pi r^3$$
.

Aktivitas untuk menunjukkan rumus volum bola dapat dilakukan dengan menakar butiran pasir menggunakan setengah bola dan dimasukkan ke tabung pasangannya. Tabung pasangan ini memiliki jari-jari sama dengan jari-jari bola dan tinggi sama dengan diameter bola. Setelah dilakukan penakaran tabung akan penuh dalam tiga takaran. Sehingga diperoleh hubungan

$$3 \times \frac{1}{2} \times \text{volum bola} = \text{volum tabung}$$

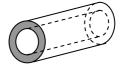
= $\pi \times r^2 \times 2r$,

Sehingga

volum bola
$$= \frac{4}{3}\pi \times r^3.$$

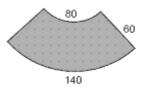
D. Latihan 2

1. Tentukan volum plastik yang dibutuhkan untuk membuat pipa plastik seperti pada gambar di samping dengan panjang 20 cm, jari-jari lingkaran luar dan dalam berturut-turut 4 dan 3 cm!



2. Helen akan memotong sebuah pola untuk rok seperti pada gambar berikut. Jika ukuran keliling pinggangnya

adalah 80 cm, keliling bagian bawah rok 140 cm dan panjang rok 60 cm, berapa luas pola untuk rok Helen?



- 3. Berapakah volum dan luas permukaan bumi yang berdiameter 12.700 km? (anggap bumi berbentuk bola dan permukaannya rata)
- 4. Sebuah hiasan berbentuk bola transparan yang di dalamnya terdapat kerucut yang mempunyai jari-jari alas setengah garis pelukisnya. Keliling alas kerucut

dan puncak menempel pada bola. Jika panjang garis pelukis adalah s, nyatakan dalam s:

- a. jari-jari bola!
- b. luas permukaan bola!
- c. bagian volum bola di luar kerucut!
- 5. Sepuluh batang bambu dengan diameter 10 cm dan panjang 4 meter diikat di dasar kolam berbentuk balok dengan ukuran panjang 4,5 m, lebar 55 cm, dan tinggi 40 cm untuk direndam dalam suatu larutan pengawet. Jika diasumsikan ujung-ujung bambu tertutup, berapa liter larutan pengawet harus dimasukkan sampai bak menjadi penuh?
- 6. Sebuah balon udara berbentuk bola berjari-jari r memerlukan udara sebanyak 2 m³. Berapa m³ lagi udara yang harus dipompakan agar jari-jarinya menjadi dua kali jari-jari semula?

E. Refleksi

Setelah Anda mempelajari materi bangun ruang dengan sisi lengkung di atas, beberapa pertanyaan berikut mungkin dapat anda renungkan sebagai bahan refleksi.

- 1. Dapatkah Anda menjelaskan apa yang dimaksud dengan bangun ruang sisi lengkung, tabung, kerucut, bola, tabung terpancung, dan kerucut terpancung?
- 2. Untuk memperagakan proses mendapatkan rumus volum bangun ruang sisi lengkung seperti kerucut dan bola, seringkali dilakukan percobaan empiris dengan menakar. Selain melalui percobaan tersebut, mampukah Anda menurunkan rumus-rumus volum tabung, kerucut, dan bola secara deduktif?
- 3. Sudahkah Anda menyelesaikan latihan 2 di atas dengan benar dan hasilnya sesuai dengan kunci jawaban di dalam lampiran?

Masih adakah bagian yang belum Anda pahami? Jika masih ada, silahkan Anda mempelajarinya kembali atau mendiskusikannya dengan teman sejawat/fasilitator Anda hingga benar-benar paham!

BAB IV PENUTUP

A. Kesimpulan

1. Volum Balok dengan panjang p, lebar l, dan tinggi t adalah

$$V_{balok} = p \times l \times t$$

Kubus dengan panjang rusuk a merupakan balok yang panjang semua rusuknya sama, sehingga

$$V_{kubus} = a^3$$

2. Luas permukaan balok dan kubus dapat ditentukan dengan menjumlahkan luas seluruh sisi-sisinya.

$$L_{permukaan\ balok} = 2 \times (p \times l + p \times t + l \times t)$$

$$L_{permukaan \ kubus} = 6 \times a^2$$

- 3. Panjang diagonal sisi dan diagonal ruang balok dapat ditentukan dengan menggunakan teorema Pythagoras. Selanjutnya dapat ditentukan luas bidangbidang diagonal.
- 4. Volum prisma segi-*n* dapat diturunkan setelah siswa mengenal rumus volum balok dengan urutan:
 - i. menentukan volum prisma segitiga siku-siku,
 - ii. menentukan volum prisma segitiga sebarang, kemudian
 - iii. menentukan volum prisma segi-n.

$$V_{prisma}$$
 = Luas alas×tinggi prisma

Untuk prisma miring, misalkan $L_{tegak\ lurus}$ menyatakan luas penampang tegak lurus rusuk sisi dan t menyatakan jarak kedua bidang alas dan tutup maka

$$V_{prisma\ miring} = L_{tegak\ lurus} \times tinggi\ prisma$$

- 5. Luas permukaan prisma merupakan penjumlahan luas sisi prisma, luas bidang alas, dan luas bidang tutup.
- 6. Volum limas segi-*n* dapat diturunkan melalui tahap-tahap:
 - i. menentukan volum limas segitiga siku-siku,
 - ii. menentukan volum limas segitiga sebarang, kemudian
 - iii. menentukan volum limas segi-n.

Secara umum

$$V_{limas} = \frac{1}{3} \times L_{alas} \times \text{tinggi}$$
.

- 7. Untuk menunjukkan rumus volum limas dapat dilakukan dengan aktivitas menakar menggunakan takaran limas dan dimasukkan ke prisma pasangannya, yaitu prisma yang memiliki alas dan tinggi yang sama dengan limas. Prisma akan terisi penuh dengan butiran pasir setelah diisi dengan 3 takaran limas.
- 8. Misalkan L_1 , L_2 , dan k berturut-turut menyatakan luas alas, luas tutup, dan tinggi limas terpancung, maka

$$V_{limas\ terpancung} = \frac{1}{3} k (L_1 + \sqrt{L_1 L_2} + L_2).$$

Luas permukaan limas terpancung merupakan jumlah luas sisi limas ditambah dengan luas alas dan luas tutup.

9. Khusus untuk prisma segitiga terpancung dengan luas penampang tegaklurus rusuk sisi L_p dan panjang rusuk sisi berturut-turut a, b, dan c berlaku

Volum prisma segitiga terpancung =
$$\frac{1}{3}(a+b+c)L_p$$
.

10. Misalkan L_{alas} menyatakan luas alas tabung dan t menyatakan tinggi tabung, maka volum tabung dapat ditentukan dengan

$$V_{tabung} = L_{alas} \times t$$
.

11. Sisi lengkung tabung jika dibuka akan membentuk persegipanjang dengan ukuran panjang sama dengan keliling lingkaran alas dan lebar sama dengan tinggi tabung. Akibatnya luas permukaan tabung dengan jari-jari alas r dan tinggi t dapat ditentukan dengan rumus

$$L_{permukaan\ tabung} = 2\pi r(r+t)$$
.

12. Jika sebuah tabung dipotong oleh bidang yang tidak sejajar alas, maka diperoleh tabung terpancung. Misalkan jari-jari alas r, dan tinggi tabung pada posisi tertinggi dan terendah dinyatakan dengan t_1 dan t_2 maka

$$L_{sisi\ lengkung} = \pi r \times (t_1 + t_2)$$

$$V_{tabung\ terpancung} = \pi r^2 \times \frac{t_1 + t_2}{2}$$
.

13. Kerucut dengan jari-jari alas r, tinggi t, dan panjang garis pelukis s, mempunyai

$$V_{\text{kerucut}} = \frac{1}{3}\pi r^2 t = \frac{1}{3} \times L_{alas} \times t$$

$$L_{\rm selimut} = \pi r s$$

$$L_{\text{permukaan}} = L_{\text{selimut}} + L_{\text{alas}}$$
.

14. Jika sebuah kerucut dipotong oleh bidang sejajar alas, diperoleh kerucut terpancung. Kerucut terpancung dengan jari-jari alas r_1 , jari-jari tutup r_2 , dan panjang garis pelukis s, memiliki

$$V_{\text{kerucut terpancung}} = \frac{1}{3}\pi k(r_1^2 + r_1r_2 + r_2^2)$$

$$L_{\text{selimut terpancung}} = 2\pi s(r_1 + r_2)$$
.

15. Bola dengan jari-jari *r* memiliki

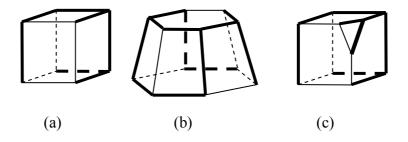
$$L_{\rm permukaan} = 4\pi r^2$$

$$V_{\text{bola}} = \frac{4}{3}\pi r^3.$$

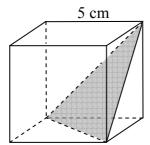
B. Tes

Kerjakanlah soal-soal tes di bawah ini! Jika telah selesai, silakan Anda melihat kunci jawabannya dan nilailah hasil pekerjaan Anda! Jika total nilai Anda adalah 75 atau lebih, maka Anda dianggap telah berhasil memahami modul ini. Selamat mengerjakan!

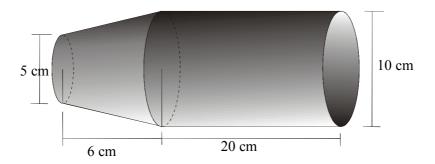
Bangun ruang sisi datar berikut akan dipotong menurut garis tebal pada rusukrusuknya. Setelah dibuka, manakah yang akan membentuk jaring-jaring? (nilai: 20)



2. Gambar di bawah menunjukkan sebuah kubus dengan panjang rusuk 5 cm yang dipotong sehingga salah satu bagiannya berbentuk limas segitiga (tetrahedron). Tentukan luas permukaan kedua bangun hasil perpotongannya! (nilai: 20)



3. Sebuah sambungan knalpot sepeda motor berupa pipa berlubang terbuat dari pelat besi dengan bentuk seperti pada gambar. Jika berat pelat besi yang digunakan adalah y kg per meter persegi, nyatakan berat benda tersebut dalam y! (nilai: 20)



- 4. Sebuah bola terbuat dari karet yang berjari-jari 21 cm dan memiliki ketebalan dinding 2,1 cm. Tentukan berapa volum karet yang diperlukan untuk membuatnya! (nilai: 20)
- 5. Tentukan volum bidang delapan beraturan (oktahedron) yang panjang rusuknya 10 cm! (nilai: 20)

DAFTAR PUSTAKA

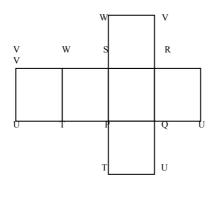
- Depdiknas. 2004. Pelajaran Matematika Kelas IX. Jakarta: Direktorat PLP Depdiknas.
- Gellert, W., Kastner, H., & Helwich, M.. 1977. The *VNR Concise Encyclopedia of Mathematics*. New York: Van Nostrand Reinhold Company.
- Hall, H.S. & Stevens, F.H.. 1949. *School Geometry Parts I VI*. London: MacMillan and Co..
- Hendra Gunawan, dkk.. 2006. *Kemampuan Matematika Siswa 15 Tahun di Indonesia*. Jakarta: Puspendik Depdiknas.
- Markaban, dkk.. 2007. Laporan Hasil Kegiatan Training Need Assessment (TNA) dan Rekruitmen Calon Peserta Diklat Guru Matematika SMP. Yogyakarta: PPPPTK Matematika.
- Marsudi Raharjo. 2007. Geometri Ruang SMP. Yogyakarta: PPPPTK Matematika.
- Thomas H. Sidebotham. 2002. *The A to Z of Mathematics, A Basic Guide*. New York: John Wiley & Sons, Inc.

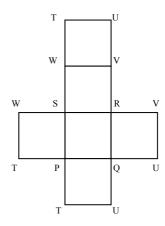
LAMPIRAN

A. Jawaban/Petunjuk Latihan 1

- 1. a. Tinggi balok = 4 cm.
 - b. Panjang balok = 7 cm.
 - c. Panjang rusuk = 5 cm.
- 2. 1,8 meter
- 3. gambar c
- 4. a.

b.





- 5. a. Volum balok = 120 cm^3 .
 - b. Volum balok = 336 cm³, pertambahan volum = 216 cm³.
 - c. Volum balok = 480 cm³, pertambahan volum = 360 cm³.
- 6. a. volum balok = $p \times l \times t$ cm³
 - b. volum balok
- = (p+x)(l+x)(t+x)

$$= plt + (pt + pl + lt)x + (p + l + t)x^{2} + x^{3}$$

pertambahan volum = $(pt + pl + lt)x + (p + l + t)x^2 + x^3$ cm³

- c. volum balok $= plt + pyt + ltx + xty + plz + pyz + lxz + xyz \text{ cm}^3,$ pertambahan volum $= pyt + ltx + xty + plz + pyz + lxz + xyz \text{ cm}^3,$
- 7. a. Volum air = luas trapesium \times tinggi prisma = 400 m^3 .
 - b. Ketinggian air bagian paling dangkal = 1,75 m.
- 8. Luas permukaan limas = $4 \times \left(\frac{1}{2} \times 6 \times 4\right) + 6 \times 6 \text{ cm}^2$

Tinggi limas = $\sqrt{7}$ cm. Jadi volum limas = $6 \times 6 \times \sqrt{7}$ cm³.

- 9. Luas permukaan limas = $4a^2 + 4 \times \frac{1}{2} \times 2a \times \sqrt{a^2 + t^2}$ cm².
- 10. a. 27 kubus kecil
 - b. 1 kubus kecil
 - c. 6 kubus kecil
 - d. 12 kubus kecil
 - e. 8 kubus kecil
 - f. Luas permukaan yang tidak terkena cat = $(1 \times 6 \times 25) + (6 \times 5 \times 25) + (12 \times 4 \times 25) + (8 \times 3 \times 25) \text{ cm}^2.$
- 11. Volum limas terpancung =

$$\frac{1}{3}k(L_1 + \sqrt{L_1L_2} + L_2) = \frac{1}{3} \times 40 \times \left(1600 + \sqrt{1600 \times 400} + 400\right) \text{ cm}^3.$$

12. Bangun yang terbentuk adalah prisma segienam. Banyak rusuk 12 buah.

B. Jawaban/Petunjuk Latihan 2

- 1. Volum plastik yang dibutuhkan = $\pi \times 4^2 \times 20 \pi \times 3^2 \times 20 \text{ cm}^3$.
- 2. Jari-jari $r_1 = \frac{140}{2\pi}$, $r_1 = \frac{80}{2\pi}$.

Luas =
$$2\pi s(r_1 + r_2) = 2\pi \times 60 \times (\frac{70}{\pi} + \frac{40}{\pi}) \text{ cm}^2$$
.

3. Volum bumi = $\frac{4}{3} \times \pi \times 12700^3 \text{ km}^3$.

Luas permukaan bumi = $4 \times \pi \times 12700^2$.

- 4. a. Jari-jari bola = $\frac{2}{3} \times \sqrt{s^2 \frac{s^2}{4}}$
 - b. Luas permukaan bola = $\frac{4}{9}\pi s^2$.
 - c. Volum bola volum kerucut.
- 5. larutan yang harus dimasukkan = volum kolam volum sepuluh bambu.
- 6. $\frac{4}{3}\pi r^3 = 2 \text{ m}^2$

Agar jari-jari dua kali semula, vol. Udara dalam balon =

$$\frac{4}{3}\pi(2r)^3 = \frac{4}{3}\pi \times 8 \times r^3 = 8 \times \frac{4}{3}\pi r^3 = 16 \text{ m}^3.$$

Udara yang harus ditambahkan (16-2) m³.

C. Jawaban Soal Tes

- 1. gambar a dan c
- 2. Luas permukaan limas segitiga = $\sqrt{50} \times \sqrt{37,5} + 3 \times \frac{1}{2} \times 5 \times 5 \text{ cm}^3$. Luas permukaan bagian yang lain = $\sqrt{50} \times \sqrt{37,5} + 3 \times 25 + 3 \times \frac{1}{2} \times 25 \text{ cm}^3$.
- 3. Berat benda = $0.02875 \pi y$ kilogram.
- 4. Volum luar = $\frac{4}{3}\pi \times 21^3 \text{ cm}^3$.

Volum dalam = $\frac{4}{3}\pi \times 18,9^3 \text{ cm}^3$.

Volum karet yang diperlukan = $\frac{4}{3}\pi \times 21^3 - \frac{4}{3}\pi \times 18.9^3 \text{ cm}^3$ = $\frac{4}{3}\pi (21^3 - 18.9^3) \text{ cm}^3$.

5. Volum bidang delapan = $2 \times \frac{1}{3} \times 100 \times \sqrt{50}$ cm³

$$=\frac{200}{3}\sqrt{50} \text{ cm}^3$$
.

Jalan Kaliurang Km 6, Sambisari, Condongcatur, Depok, Sleman, Yogyakarta Kotak Pos 31 YKBS YOGYAKARTA 55281 Telepon (0274) 885725, 881717, Faksimili 885752 Web site p4tkmatematika.com E-mail p4tkmatematika@yahoo.com